http://www.sciencehuman.com 科学人 网站 2012-11-20
闻名于世的“诺贝尔奖”,每年一次授予在物理学、化学、生理学或医学,以及一些人文领域做出卓越贡献的人,至今已有100多年的历史。然而,诺贝尔并没有设立专门的天文学奖项,这导致了20世纪前70年天文学的成就与诺贝尔奖无缘。由于天体物理学的发展,特别是天文观测所发现的许多物理特性和物理过程是地面上的物理学实验所无法实现的,宇宙及各种天体已成为物理学的超级实验室。天体物理学的一些突出成果有力地推进了物理学的发展,这样,天文学成就获得“诺贝尔物理学奖”就成为很自然的事了。
诺贝尔奖的设立与天文学的尴尬
诺贝尔奖是以瑞典著名化学家阿尔弗雷德·贝恩哈德·诺贝尔(Alfred Bernhard Nobel,1833年10月21日~1896年12月10日)的部分遗产作为基金创立的。诺贝尔奖包括金质奖章、证书和奖金支票。诺贝尔在他的遗嘱中提出,将部分遗产(920万美元)作为基金,以其利息分设物理、化学、生理或医学、文学及和平5种奖金,授予世界各国在这些领域对人类做出重大贡献的学者。1968年瑞典中央银行于建行300周年之际,提供资金增设诺贝尔经济学奖,并于1969年开始与其它5种奖同时颁发。诺贝尔奖还有一个规定,即只有先前的诺贝尔奖获得者、诺贝尔奖评委会委员、特别指定的大学教授、诺贝尔奖评委会特邀教授才有资格推荐获奖的候选人。
由于没有设立诺贝尔天文学奖,在很多年里,天文学家既没有推荐权,也不会被人推荐。在这个世界公认的科学界最高奖面前,天文学和天文学家的处境不免有些尴尬。
天文学与物理学相互促进
天文学是研究地球之外天体和宇宙整体的性质、结构、运动和演化的科学,物理学是研究物质世界基本规律的一门科学。研究各种物质形态都会形成相应的物理学分支,其中包括研究天体形态和特性的天体物理学。很显然,天文学与物理学的关系十分密切,相互关联,密不可分。天文学成就可以归入诺贝尔物理学奖的范围是在情理之中的,但是要使这个道理得到公认很不容易,花费了几十年的时间。
20世纪初,物理学家根据物理学规律提出了许多天文学预言:如广义相对论预言星光在太阳引力场中的弯曲、水星近日点的运动规律和引力场中的光谱红移现象;预言中子星、微波背景辐射、星际分子和黑洞的存在等。这些预言在证实的过程中曾走过艰难的历程甚至弯路,这些伟大的预言推动着天文学家和物理学家们为之奋斗,并且发展了一个个新的分支学科。
天文观测为物理学基本理论提供了认识地球上实验室无法得到的物理现象和物理过程的条件。开普勒发现了行星运动三定律以后,牛顿为解释这些经验规律才导出万有引力定律,而在地球上的物理实验室中是总结不出万有引力定律的。此后,从对太阳及恒星内部结构和能量来源的研究中获得了热核聚变反应的概念;对星云谱线的分析提供了原子禁线理论的线索;从恒星演化理论发展出了元素形成理论。天文学观测的新发现也给物理学以巨大的刺激和挑战:中子星的发现推动了致密态物理学的发展,而类星体、星系核、射线暴等现象的能量来源迄今还很难从现有的物理学规律中找到答案。
随着物理学的发展,物理学家必然要把宇宙及各种天体作为物理学的实验室。物理学家涉足天文学领域的研究成为一种必然。而天文学家也会密切地注视着物理学的发展,以期用物理学原理来解释宇宙的过去、现在和将来。
一批天文学历史性成就无缘诺贝尔奖
在1901年开始颁发诺贝尔奖以后,天文学上有很多重大的发现,其科学价值可与获得诺贝尔物理学奖的一些项目媲美。
1912年,美国女天文学家勒维特(Henrietta Swan Leavitt)发现造父变星的周光关系,从而得出一种估计天体距离的方法,这直接导致了河外星系的发现。1911年~1913年,丹麦天文学家赫茨普龙(Hertzsprung Ejnar)和美国天文学家罗素(Henry Norris Russell)各自独立地得到了恒星光度和光谱型的关系图,即赫罗图,赫罗图在恒星起源和演化的研究中起到了举足轻重的作用。1918年,美国天文学家沙普利(Harlow Shapley)发现银河系中心在人马座方向,纠正了太阳是银河系中心的错误看法。1924年,美国天文学家哈勃(Edwin P.Hubble)确认“仙女座大星云”是银河系之外的恒星系统,继而在1929年发现了著名的哈勃定律,证明宇宙在膨胀。1926年,英国天文学家爱丁顿(Arthur Stanley Eddington)出版专著《恒星内部结构》,这本书成为恒星结构理论的经典著作。然而,这些成果无一例外地被诺贝尔物理学奖拒之门外。
就像1927年诺贝尔物理学奖得主威尔逊发明的云雾室成为研究微观粒子的重要仪器一样,望远镜的发展使我们能够观测到更遥远、更暗弱的天体及天体现象。但是没有一项光学望远镜的成就获奖。其中如美国天文学家海尔(Alan Hale)研制的口径1.53米、2.54米和5.08米三架大型反射望远镜,1930年施密特研制的折反射望远镜,以及20世纪90年代研制完成的10米口径凯克I号和II号望远镜等,都代表了天文学观测手段的历史性成就。
获诺贝尔物理学奖的与天文学相关课题
随着物理学的发展,物理学家必然要把宇宙及各种天体作为物理学的实验室。在宇宙中所发生的物理过程比地球上所能发生的多得多,条件往往更为典型或极端。在地球上做不到的物理实验,在宇宙中可以观测到。物理学家涉足天文学领域的研究成为必然。
赫斯发现宇宙线 1911年~1912年,奥地利物理学家赫斯(Victor Francis Hess)用气球把“电离室”送到距离地面5000多米的高空进行大气导电和电离的实验,发现了来自地球之外的宇宙线。1936年,赫斯因此获得诺贝尔物理学奖。实际上,宇宙线的发现既是一项物理学实验,更是天文学观测成果。
贝特提出太阳的能源机制 1938年美国物理学家贝特(Hans Bethe)研究核反应理论的过程中,提出太阳和恒星的能量来源于核心的氢核聚变所释放出的巨大能量。1967年,他因此项研究成果获得诺贝尔物理学奖。
汤斯开创分子谱线天文学 美国物理学家汤斯(Charles Townes)利用氨分子受激发射的方式代替传统的电子线路放大,研制出了波长为1.25厘米的氨分子振荡器,简称为脉泽。他由地球上的“脉泽”联想到太空中的分子,预言星际分子的存在。并计算出羟基(-OH)、一氧化碳(CO)等17种星际分子谱线频率。1963年,年轻的博士后巴瑞特观测到了预言中的羟基分子谱线,成为轰动全球的20世纪60年代四大发现之一。由此汤斯成为分子谱线天文学的拓荒人和首创者。1964年,他因氨分子振荡器成功研制而获该年度的诺贝尔物理学奖,而这项研究的副产品开创了一门新兴的天文学科,其科学意义不逊于氨分子振荡器的研制成功。
物理学家涉足天文学的研究所取得的成果能够登上诺贝尔奖的大雅之堂,那么天文学家的研究成果,自然也应该被诺贝尔物理学奖容纳。
天文学理论首先与诺贝尔奖结缘
天文学家们密切注视着物理学的发展,并在天文学的研究过程中发展了物理学。瑞典天文学家阿尔文首先于1970年用他的“太阳磁流体力学”的出色成果叩开了诺贝尔物理学奖的大门,接着又有钱德拉塞卡的“恒星结构和演化”和福勒等几人合作的“恒星演化元素形成理论”的获奖。这三项诺贝尔物理学奖的理论性很强,但都是建立在深入细致的天文观测基础上的。光学望远镜的长期观测提供了极其宝贵的资料,所获得的统计规律给理论研究指明了方向,提供了解决问题的线索。这三个项目也体现了物理学理论和天文学最完美的结合。
首次获诺贝尔奖的天文学家 在太阳上发生的一切物理过程都与磁场和等离子体有关。磁流体力学成为太阳物理最重要的理论基础。瑞典科学家阿尔文(Hannes Alfvén)是磁流体力学的奠基人,他首先应用这个理论研究太阳,因此也称太阳磁流体力学。由于这一理论也适用于宇宙中其它天体和星际介质,也就成为宇宙磁流体力学。阿尔文因为对宇宙磁流体动力学的建立和发展所做出的卓越贡献而荣获1970年度诺贝尔物理学奖,这是历史上第一次以天文学研究成果获诺贝尔物理学奖。
美国天文学家钱德拉塞卡奋斗终生的成就 在钱德拉塞卡(Subrahmanyan Chandrasekhar)还是剑桥大学研究生的时候,他就获得了“白矮星质量上限”这一研究成果。这一成果意味着超过白矮星质量极限的老年恒星的演化归宿将可能是密度比白矮星更大的中子星或者黑洞,其意义不同寻常。但由于受到权威学者错误的压制,这一成果未能得到进一步深入研究。在这之后,他几十年如一日地研究恒星结构和演化理论,1983年,在他73岁高龄时以特别丰硕的成就获得该年度的诺贝尔物理学奖。
B2FH元素形成的理论 宇宙中存在的各种元素是怎样来的?这是个天文学家应该回答、却很难回答的问题。但是由天文学家霍伊尔(Fred Hoyle)、伯比奇(G.Geoffrey Burbidge)夫妇和核物理学家福勒(William Fowler)合作完成的研究课题却揭示了这个自然之谜。人们按论文作者姓氏字母顺序称之为B2FH元素形成理论。这篇论文解决了在恒星中产生各种天然元素的难题,被视为经典科学论文。这是天文学家和核物理学家合作研究天文学重大课题的典型例子。
1983年,上述论文的第三作者福勒获得了诺贝尔物理学奖,这个结果显得很不公平,备受质疑。福勒的贡献的确很大,但是另外三位天文学家的贡献也不是可有可无的,特别是霍伊尔作为这个研究课题的提出者和组织者,其前期的研究已经提出“恒星内部聚变产生元素”的创新思想,把他排除在诺奖之外很有些匪夷所思。
射电天文学成为诺贝尔奖的摇篮
射电天文学是20世纪30年代发展起来的天文学新分支,其特点是利用射电天文望远镜观测天体的无线电波段的辐射。和光学望远镜400多年的历史相比,它仅有几十年历史,但却很快就步入了鼎盛时期。20世纪60年代射电天文学的“四大发现”,即脉冲星、星际分子、微波背景辐射、类星体,成为20世纪中最耀眼的天文学成就。射电天文已成为重大天文发现的发祥地和诺贝尔物理学奖的摇篮。
赖尔的突破 物理学中因发明新器件而获诺贝尔物理学奖的事例屡见不鲜。然而在20世纪前几十年当中,光学天文望远镜的发展很快,导致了不少重要的天文发现,但却没有一项得奖。1974年,英国剑桥大学的赖尔(Martin Ryle)教授因发明综合孔径射电望远镜而获得了诺贝尔物理学奖,这是天文学家终于实现因研制天文观测设备而获诺奖的突破。射电望远镜开辟了观测的新波段,但是刚刚发展起来的射电天文显得十分幼稚,最大的问题是空间分辨率很低,且不能给出射电源的图像。1952年,赖尔提出综合孔径望远镜理论,这是一种化整为零的射电望远镜,用两面或多面小天线进行多次观测就可以达到大天线所具有的分辨率和灵敏度。而且,还能得到所观测的天区的射电图像。1971年,剑桥大学建成的等效直径为5千米的综合孔径望远镜,其分辨率已和大型光学望远镜相当,获得了一大批射电源的图像资料。
休伊什和贝尔发现脉冲星 脉冲星的发现证实了中子星的存在。中子星具有和太阳相当的质量,但半径只有10千米。因此具有非常高的密度,是一种典型的致密星。中子星还具有超高压、超高温、超强磁场和超强辐射的物理特性,成为地球上不可能有的极端物理条件下的空间实验室。它不仅为天文学开辟了一个新的领域,而且对现代物理学发展也产生了重大影响,导致了致密物质物理学的诞生。英国剑桥大学的天文学教授休伊什(Hewish Antony)和他的研究生乔丝琳·贝尔(Jocelyn Bell Burnell)女士一起发现了脉冲星。休伊什因发现脉冲星并证认其为中子星而荣获1974年的诺贝尔物理奖是当之无愧的,但贝尔博士未能和休伊什一起获得诺贝尔奖却是一件憾事,目前天文学家公认她是发现脉冲星的第一人。
彭齐亚斯和威尔逊发现宇宙微波背景辐射 1963年初,彭齐亚斯(Arno Allan Penzias)和威尔逊(Robert Woodrow Wilson)把一台卫星通讯接收设备改造为射电望远镜进行射电天文学研究。在进行观测过程中意外发现了多余的3.5开温度的辐射。这种辐射被确认是宇宙大爆炸时的辐射残余,成为宇宙大爆炸理论的重要观测证据。由此,他们获得了1978年度的诺贝尔物理学奖。彭齐亚斯和威尔逊发现宇宙微波背景辐射,所获得的黑体谱并不精确,而且他们得到的微波背景辐射的空间分布是各向同性的,这与大爆炸宇宙学的理论有着明显的差别。
赫尔斯和泰勒发现射电脉冲双星 继1974年休伊什教授因发现脉冲星而获得诺贝尔物理学奖之后,1993年美国普林斯顿大学的赫尔斯(Russell A.Hulse)和泰勒(Joseph H.Taylor)两位教授又因发现射电脉冲双星而共同获得该年度诺贝尔物理学奖,引起了全世界的轰动。他们发现的脉冲双星系统之所以重要,不仅因为是第一个,还因为它是轨道椭率很大的双中子星系统,成为验证引力辐射存在的空间实验室。他们经过近20年坚持不懈的努力,上千次的观测,终于以无可争辩的观测事实,间接证实了引力波的存在,开辟了引力波天文学的新领域。
新世纪天文观测再续辉煌
观测是天文学研究的主要方法。观测手段越多、越好,所能得到的信息就越丰富。进入21世纪仅仅10余年,已有4个天文项目获得了诺贝尔物理学奖,分别属于X射线、中微子、射电和光学观测研究领域。
贾科尼创立X射线天文学 1901年伦琴(Wilhelm Conrad Röntgen)因为发现X射线荣获诺贝尔物理学奖。时隔102年,X射线天文学的创始人里卡尔多·贾科尼(Riccardo Giacconi)又获诺奖殊荣。由于地球大气对X射线和射线的强烈吸收,只能把探测器送到大气层外才能接收天体的X射线和射线辐射。20世纪30年代以后,特别是到了90年代,空间探测的发展使得X射线天文学得到了发展,实现了天文学观测研究的又一次飞跃。美国天文学家贾科尼由于对X射线天文学的突出贡献荣获2002年度诺贝尔物理学奖。
贾科尼对X射线天文学的贡献是全面的,瑞典皇家科学院发表的新闻公报把他的贡献归纳为“发明了一种可以放置在太空中的探测器,从而第一次探测到了太阳系以外的X射线源,第一次证实宇宙中存在着隐蔽的X射线背景辐射,发现了可能来自黑洞的X射线,他还主持建造了第一台X射线天文望远镜,为观察宇宙提供了新的手段,为X射线天文学奠定了基础。贾科尼被称为“X射线天文学之父”当之无愧。
戴维斯和小柴昌俊发现太阳中微子 中微子是组成自然界的最基本的粒子之一,中微子不带电,质量只有电子的百万分之一,几乎不与任何物质发生作用,因此极难探测。理论推测,在太阳核心发生的氢核聚变为氦的反应中,每形成一个氦原子核就会释放出2个中微子。太阳每秒钟消耗5.6亿吨氢,要释放1.4×1038个中微子。太阳究竟会不会发射如此多的中微子?只能由观测来回答。
美国物理学家戴维斯(Raymond Davis)是20世纪50年代唯一敢于探测太阳中微子的科学家。他领导研制的中微子氯探测器,放置在地下深1500米的一个废弃金矿里。在30年漫长的探测中,他们共发现了来自太阳的约2000个中微子,平均每个月才探测到几个中微子。而日本东京大学的小柴昌俊(Masatoshi Koshiba)教授创造了另一种中微子探测器。这两台探测器分别放在很深的矿井中,并分别于1983年和1996年开始探测,都探测到了来自太阳的中微子。1987年,在邻近星系大麦哲伦云中出现了一次超新星爆发,理论预测在超新星爆发过程中会产生数量惊人的中微子。令人兴奋不已的是,他们成功地探测到了12个中微子。戴维斯和小柴昌俊因为成功地探测到中微子而荣获2002年度的诺贝尔物理学奖。
马瑟和斯穆特发现宇宙微波背景辐射黑体谱和各向异性的空间分布 美国宇航局戈达德空间飞行中心的马瑟(John C.Mather)和加利福尼亚大学伯克利研究中心的斯穆特(George Fitzgerald Smoot III),为了精确测定微波背景辐射的黑体谱和检测其各向异性的特性进行了专门空间观测。他们组织领导了“宇宙背景探测者”卫星(简称COBE)的研制,卫星携带了毫米波、亚毫米波和红外波段的观测设备,进行了4年的观测。最终确认,宇宙微波背景辐射谱与温度为2.726开的黑体谱惊人一致。还发现宇宙微波背景辐射各向异性现象的存在。2006年,马瑟和斯穆特共同获得了该年度的诺贝尔物理学奖。
发现宇宙加速膨胀的佩尔穆特、施密特和里斯 2011年的诺贝尔物理学奖,授予了发现宇宙在加速膨胀的3位天文学家:美国的索尔·佩尔穆特(Saul Perlmutter)、美国/澳大利亚双重国籍的布赖恩·施密特(Brian Paul Schmidt)和美国的亚当·里斯(Adam Guy Riess)。这项成就源于对Ia型超新星的观测研究。Ia超新星爆发是由于处在双星系统中的白矮星吸积伴星物质,导致质量超过了白矮星的质量上限而发生塌缩和爆炸。由于这一类型的超新星爆炸时的质量几乎都相同,所以它们的最大光度几乎是一样的,可以作为“标准烛光”,成为一种估算遥远天体距离的重要方法。超新星的主要观测手段是光学观测。佩尔穆特等三人分属两个课题组,研究课题都是“超新星宇宙学研究”,都是要寻找遥远的Ia型超新星。他们发现远处的Ia型超新星的视亮度比预期要暗25%,也就是比预期的距离更为遥远,意味着宇宙膨胀的速度比预想的要快,宇宙处在加速膨胀之中。这一结果当即轰动世界。分析认为,是暗能量在推动宇宙加速膨胀。
[腾讯网-中国国家天文]
相关报道
中国空间天文学迎来新黎明
中国载人航天工程以其过硬的实力赢得了广泛赞誉。接下来,中国的基础学科研究人员也会迎来一个漂亮的转身。在未来几年里,中国将启动9项科学探测航天任务。同时,在轨运行的“天宫一号”已经在安装了用于科研的有效载荷,未来三年内将发射的“天宫二号”、“天宫三号”也进入准备阶段。此外,科学家们还在为中国的未来空间站设计实验。
2003年秋完成的羊八井的空气簇射观测装置。在300m×300m的占地内用白色塑料布覆盖的闪烁探测器按照7.5m的间隔配置。左侧的建筑物中有数据收集室与实验室。正中间的建筑物 (400㎡) 中设置有乳剂室与爆丛探测器。
位于西藏的羊八井的大型高海拔空气簇射观测站。该站通过对宇宙高能伽马射线的观测,有望解决“宇宙中最高能量粒子的起源”这样的天文和物理学中的前沿问题。
中国科学院高能物理研究所的天体物理学家张双南表示:“当我翻阅天文类书籍时,书中几乎没有任何在中国工作的科学家的发现,没有看到任何一张照片是由中国望远镜拍摄的,这让我非常沮丧。”中国科学院国家空间科学中心主任吴季也补充道:“在掌握新知识方面,我们面临着上自政府高层、下自基层公众的越来越大的压力。”
2011年5月3日,吴季宣布中国科学院将在未来几年内承担五项空间探测任务,这预示着中国空间科学新时代的到来。过去5年中,中国科学院为这几个项目提供的预算已经达到5.54亿美元,并在去年成立了专门监管这些项目进展的国家空间科学中心。
在这些计划中,天体物理学居于核心地位。首先取得进展的将是“硬X射线调制望远镜”(HXMT) ,这个望远镜的构想可以追溯到20年前,它将利用黑洞、中子星等天体的X射线和伽马射线辐射,对这些天体展开观测。它将成为中国首个空间天文卫星,最早于2014年发射,届时它将成为中国的“黑洞探针”计划三大卫星中最早升空的一个。另外,“暗物质粒子探测卫星”也正在由南京的中国科学院紫金山天文台研制,这一卫星将记录暗物质粒子彼此湮灭时产生的伽马射线。此外,还有更多的项目已经通过了初期论证,预计从2016年开始,在下一个五年计划里陆续完成研制、发射,它们的出现将大大加强中国在空间天体物理学领域的实力。其中一项是由中国科学院高能物理研究所设计的“X射线时变与偏振探测卫星”(XTP)项目。项目负责人张双南表示,作为空间震荡探测项目的主导设备,它将会“比硬X射线调制望远镜更强有力并取得更大成就”。他指出,“X射线时变与偏振探测卫星”收集数据的区域更加广泛,具有能采集更多光子的高强镜面,因此可以观察到更微弱的天体并探测到它们的细节。全世界的天体物理学家们都期待出现这样一台空间望远镜,不过去年美国宇航局和欧洲空间局却取消了“国际X射线天文台”的计划,上个月,它的名为“雅典娜”的简化版望远镜也在欧洲空间局的内部竞争中输给了木星探测器项目,未能成功立项。中国的“X射线时变与偏振探测卫星”项目将研究旋转坠入黑洞的物质放射出的X射线,或者参考系拖曳(例如旋转黑洞拖拽时空)产生的X射线信号。张双南说:“我们将要研究的是极端条件下的物理学。”
作为“天体肖像”项目的核心,中国打算将其长期积累的技术能力移植到新的空间射电望远镜项目的“甚长基线干涉”(VLBI)观测中。中国计划发射相关飞行器,与地面天线串连或者组成阵列,这样就相当于一部极其巨大的单天线射电望远镜,其有效口径等于各台设备之间的最大距离。
中国科学院上海天文台负责设计望远镜阵列系统和相关国际合作。上海天文台台长洪晓瑜介绍说,计划中的望远镜阵列最初将包括两个长毫米波天线,每个天线的口径为10米。这一望远镜阵列投入使用后,首要的目标将是绘制星系中心的特大质量黑洞及其吸积盘的精细结构,它们被普遍认为是活动星系核的能量来源。洪晓瑜说,他的团队希望在第一个望远镜阵列投入使用十年后,将发射普通毫米波天线。更长的基线和更短的波长将使射电源观测的分辨率大大提高。
今年6月的“神舟九号”任务是中国首次实现载人空间对接,这为中国科学家开启了一个新领域,使中国有能力向“天宫一号”运送仪器设备,并安装另外两个舱段。
一系列设备已经为“天宫”做好准备。天体物理学家们也有理由为此欢呼。在已批准的项目中,中国和瑞士合作的“伽马暴偏振探测”(POLAR)项目作为中国空间天文“黑洞探针”计划的组成部分,预计将由2014年发射的空间实验室“天宫二号”搭载升空。它将帮助科学家确定伽马暴喷流的磁场结构,这又将反过来推进伽马暴成因的研究。有一种理论解释是,它是大质量恒星在演化晚期坍塌时发生的;另一种则认为是由中子星或者黑洞并合时产生的。“每个理论模型都预言了不同的磁场结构”,张双南表示。
“天宫”系列目标飞行器是中国发展未来空间站的踏脚石。去年12月,中国公布了60吨空间站计划,并将在2020年之前建成。中国载人航天工程办公室等待着批准第一批有效载荷,其中包括一整套天文设备,统称为“宇宙灯塔项目”。项目中有两个大型设备,其中之一是“高能宇宙射线探测装置”,用于研究暗物质和宇宙射线。
另外一个大型设备是一台大视场光学望远镜,它将为中国在即将来临的大规模巡天时代中争得一席之地,其科学目标是揭示暗能量的性质。这架望远镜具有很高的角分辨率,其观测波段将覆盖从光学到近紫外线的多个波段,它将成为世界其它地方的观测设备的重要补充,例如“大口径全天巡视望远镜”(LSST)。据LSST项目成员、中国科学院国家天文台的宇宙学家詹虎介绍,美国的“大口径全天巡视望远镜”的口径为8.4米,将安装在智利帕琼山天文台,计划在2018年初光。如果中国的巡天任务能够成功立项,通过与国际同行的合作,中国科学家将会做出更多新的科学贡献。詹虎表示,“通过巡天观测,你总能够发现一些预料之外的事情。当前的物理学不能解释暗能量。我们有可能会发现一些革命性的物理规律。”(文 /Richard Stone 译/黄京一)
[腾讯网-中国国家天文]