http://www.sciencehuman.com 科学人 网站 2017-04-
大型强子对撞机又有新发现:新的异常信号本质成谜
来自欧洲大型强子对撞击的消息显示,有一些迹象表明,实验中似乎有一种新的未知信号出现,而一旦得到证实,那将颠覆我们当前对于粒子物理学的理解
这一数据异常在第一轮运行的CERN对撞击数据中被检测到,而如果未来在第二轮的实验运行中又被再次检测到,那么这一信号并非实验误差,而是真实现象的可能性将会大大提升,而这将意味着超越粒子物理学标准模型的全新物理学
新浪科技讯 北京时间4月21日消息,据国外媒体报道,来自欧洲大型强子对撞击的消息显示,有一些迹象表明,实验中似乎有一种新的未知信号出现,而一旦得到证实,那将颠覆我们当前对于粒子物理学的理解。
在欧洲核子中心大型强子对撞机的实验中,数据出现了一处神秘的异常,似乎暗示某种超越粒子物理学标准模型的新规律的存在。
在实验中,研究人员们注意到,在某些特定环境条件下,某些类型的粒子的衰变几率低于理论预期,科学家们目前正在全力工作,希望能够查明这究竟是否暗示了某种全新的物理学现象,抑或只不过是信号上出现的统计误差。
尽管目前阶段,这项发现还仅仅被认为具有一定的统计学意义,但这项发现与此前的几项研究结论是相吻合的,这些研究认为,这种数据异常背后可能对应着某种“新的东西”。
相关实验报告是在近日召开的欧洲核子中心的一个论坛上被提到的,其中涉及B0介子衰变为激发态的K介子以及一对电子或μ介子的问题。
尽管质量要比电子大200倍左右,但根据轻子普适性原理,μ介子在反应中的性质与电子是十分相似的。
在粒子物理学标准模型中,这一性质决定了在这一特定的B0衰变中,尽管有质量差异,但μ介子和电子产生的几率应该是相同的。但在此次大型强子对撞机的实验数据中,研究人员却发现μ介子的产生几率似乎要低于预期值。
标准模型还指出电子和μ介子之间具有高度对称性,这一点已经得到诸多研究结果的证实,因此欧洲核子中心的一部分科学家认为,此次在CERN实验中观测到的这种不对称性或许的确暗示着某种意义上的“新物理”。
然而,正如研究人员们所指出的那样,在目前阶段要想做出最终判断还为时过早,未来还需要更多实验以便确认相关发现,并排除实验数据统计误差的可能性。
这里所提到的这一数据异常在第一轮运行的CERN对撞击数据中被检测到,而如果未来在第二轮的实验运行中又被再次检测到,那么这一信号并非实验误差,而是真实现象的可能性将会大大提升,而这将意味着超越粒子物理学标准模型的全新物理学。
就在这一消息发布之前几周,科学家们还刚刚宣布新发现了5种此前未知的亚原子粒子。那些粒子同样是在大型强子对撞机的实验数据中被找到的,这台世界上最复杂的粒子物理学实验设备的建造目的便是为了探寻宇宙大爆炸之后的极早期阶段宇宙所处的状态模式。
英国利物浦大学的塔拉·希尔斯(Tara Shears)教授是发现此前5种新的亚原子粒子的实验负责人,他说:“这些粒子一直躲藏在我们的眼皮子底下好多年。要想发现它们,你需要极高的探测灵敏度。”
此次所有发现的5种新粒子都属于重子,简单说就是,它们都是由三种不同夸克组成的粒子。
夸克被认为是组成物质的最基本单元之一,目前已经被发现存在着六种不同的夸克,被称作六种不同的“味”,分别是:上夸克、下夸克、粲夸克、奇夸克、底夸克和顶夸克。而此次新发现的几种粒子属于高能状态的Ω-C重子,它是由两个奇夸克和一个粲夸克组成的。
重子(baryon)一词来自希腊语,意为“重的”,因为在这类粒子最早被发现时,其属于当时已知质量最大的粒子之一。(晨风)
[新浪网]
粒子物理有望超越标准模型
LHC 底夸克探测器 图片来源:CERN
数十年来,粒子物理学家都渴望超越标准模型。尽管希格斯玻色子完成了标准模型的最后一块拼图,但科学家从未停止寻找标准模型以外的线索。现在,欧洲核子中心(CERN)的大型强子对撞机(LHC)有了新突破,疑似有新粒子产生。2012年,正是LHC发现了“上帝粒子”希格斯玻色子。
研究人员在实验中发现B介子的衰变过程与标准模型描述不符,结合此前发现的其他线索,科学家或许已经捕捉到了新粒子的身影。西班牙巴塞罗那自由大学理论家Joaquim Matias说,“此前我们从未观察到标准模型出现一系列相互关联的偏差,而这一系列偏差可以用一个非常简单的方式解释:存在一种新粒子。”Matias认为证据已经显示这是个大发现,其他同行却还持谨慎观望态度。
美国费米实验室宣布发现顶夸克后,证实了标准模型所预言的61种基本粒子中的60种。剩下的唯一未被发现的粒子就是希格斯玻色子。最终,CERN两个最大探测器ATLAS和CMS,分别独立发现了希格斯粒子。不过,这次发现新线索的是LHC一个规模较小的探测器,名叫LHCb(LHC底夸克探测器)。LHCb的任务是精确监测已知粒子,尤其是B介子的衰变过程。
B介子由夸克这种基本粒子构成。人们熟悉的质子和中子就是由夸克构成的。而高能粒子对撞还会产生一些更重的夸克:魅夸克、奇夸克、顶夸克和底夸克。这些夸克可以和反夸克一起组成介子。B介子就是由1个反底夸克和1个夸克组成。
虽然,B介子只会存在一万亿分之一秒,但科学家希望它的衰变过程能为窥见新物理世界打开一扇窗。多亏量子的不确定性,内部动荡能影响其衰变。如果在B介子衰变过程中有任何新粒子介入,衰变的速度和细节都会偏离标准模型的预测。
这就为人类提供了一种间接发现新粒子的方法。20世纪70年代,人们还只知道上夸克、下夸克和奇夸克,物理学家就是因为发现K介子(由1个奇夸克和1个反夸克组成的介子)的衰变过程有点奇怪,进而预测了魅夸克的存在。
近日,LHCb研究人员在CERN报告称,他们发现其中一种B介子衰变为K介子时,副产物和标准模型预测的有所偏差。根据标准模型,该衰变要么产生1个μ介子和1个反μ介子,要么产生1个电子和1个正电子,概率是均等的。但在实验中,他们发现概率分布并不均匀:前者发生的频率小于后者。英国牛津大学物理学家Guy Wilkinson代表LHCb组的770个成员说:“这个测量结果很重要,因为在理论上应该是非常均匀的。”
实际上,该结果只是LHCb发现的6个似乎一致的线索之一。早在2013年,他们就发现B介子衰变时产生的粒子偏离了标准模型预测的角度。
而所有这些异常现象并不确定。按照标准模型,在B介子衰变为K介子时,底夸克会先短暂地变成顶夸克,再变成奇夸克。在这个过程中,底夸克需要先释放和再重新吸收一个W玻色子(W玻色子是一种传递弱相互作用力的粒子)。
不过,最新实验数据表明,底夸克可能直接变成奇夸克—— 一个在标准模型中不可能发生的变化,而这种变化是通过放出一种标准模型以外的新粒子,即Z′玻色子实现的。而这个假设的新粒子将是首个标准模型之外的粒子,并将为该理论添加新力量。
此外,这个额外的衰变过程会减少μ介子的形成,从而解释这种反常现象。“这听起来像是为解释而解释,但这种假设确实对应了实验数据。”辛辛那提大学理论学家Wolfgang Altmannshofer说。另一些科学家则假设存在一种夸克和电子的杂交体——轻子夸克,并提供了另一种方法解释这些偏差。
当然,这种偏差也可能是由实验数据的波动导致的幻觉。18个月前,ATLAS和CMS的研究人员就疑似找到了一种新粒子,最后发现他们只是缺乏足够的实验数据。Altmannshofer表示,当下的信号与之前的信号一样强劲。
但它们之间也存在不同。“ATLAS和CMS主要是发现新东西,而LHCb更多的是进行补充。”Matias说。
如果Z′玻色子或轻子夸克真的存在,LHC就可能通过对撞找到它们,即便它们存在的时间非常短。停工了一个冬天之后,LHC即将恢复工作。下个月,那些粒子探测器就将回归岗位。(张章编译)
《中国科学报》 (2017-04-25 第3版 国际)
[科学网-中国科学报]
欧核中心或发现标准模型外全新粒子
科技日报北京4月20日电 (记者聂翠蓉)欧洲核子研究中心(CERN)官网18日发布消息,其负责监测粒子衰变过程的LHCb实验组,在B介子衰变中发现了与标准模型不符的偏差信号,预示着可能捕捉到标准模型以外的全新粒子。
B介子由基本粒子夸克组成,可细分为4种,只能存在一万亿分之一秒,其衰变过程成为科学家们观测新粒子的间接方法。如果衰变的速度和细节偏离了标准模型的预测,就证明有新粒子介入,与B介子发生作用。
LHCb实验组科学家在当天举行的CERN内部讨论会上公布了这一最新实验结果。他们发现,一种B介子在衰变为K介子的过程中,产生渺子(μ子)和反渺子的几率小于产生电子和正电子的几率,这种概率分布不均与标准模型的预测有所偏差。根据标准模型,衰变成渺子和反渺子与电子和正电子的概率应该均等。
实验组成员、巴塞罗那自由大学约奎姆·马蒂亚斯说:“之前我们已经发现5次类似偏差,加上这次观测到的B介子衰减偏差,对这一系列偏差的最好解释就是:存在一种新的粒子。”
标准模型是现代粒子物理学的基石,其61种基本粒子中的最后一个——希格斯玻色子已在2012年由大型强子对撞机(LHC)找到,但物理学家们一直渴望能发现存在于标准模型以外的新粒子和新物理现象。部分科学家对这次新数据提出假设,认为这种标准模型以外的第一个新粒子可能是Z9玻色子;还有科学家则假设其为一种夸克与电子的结合体,即轻子夸克(Leptoquark)。
马蒂亚斯认为,这是个值得召开新闻发布会的重大发现,但其他物理学家谨慎表示,这次偏差只有2.2到2.5个西格玛,距离得出肯定结论要求的5个西格玛以上还差很远,需要进一步观察类似衰变,以验证这些偏差线索究竟是统计学波动,还是新粒子存在的证据。下个月即将恢复工作的LHC,会提供进一步数据,答案即将揭晓。
[科学网]