http://www.sciencehuman.com 科学人 网站 2012-11-09
巨型黑洞喷射超高速粒子产生稀薄气泡(图)
这张假彩色图像展示的便是M87星系。图像中右侧为可见光波段观测结果,数据源自SDSS项目,左侧则是射电波段观测结果,数据源自LOFAR。可以看到,在中央位置上射电辐射的亮度非常高,显示这里便是驱动喷流的黑洞所在位置
这是LOFAR天线阵设备的一个站点,位于德国境内。整个系统包括德国境内的6个站点,以及荷兰境内的40个站点。该设备的主要工作频率是在10~240 MHz
新浪科技讯 北京时间10月31日消息,据物理学家组织网站报道,正如生物的共生现象相似,星系和它中央的黑洞之间存在着紧密联系,共同演化发展。天文学家们对于这种共生关系目前仍然有很多地方不甚了解。有一些黑洞处于活跃状态,不断吞噬物质。这些下落的物质中有一部分并没有被吞入黑洞,而是被反弹回来,以一股细长的流体形式向外喷射,速度接近光速。当这股喷流的速度逐渐减下来之后,它就会形成一个稀薄的巨大球体,其大小甚至足以放进一个星系。这个巨大的“气泡”在可见光波段是看不到的,然而在射电波段却非常明显。而最近由荷兰射电天文研究院(ASTRON)通过国际合作努力建成的LOFAR望远镜就非常适合观测这类低频率天体目标。
借助LOFAR望远镜在20~160MHz波段进行的观测,天文学家们已经构建了这种“气泡”迄今质量最佳的图像之一。该项研究的论文第一作者弗朗西斯·加斯佩林(Francesco de Gasperin)表示:“这一结果非常重要。它显示了LOFAR望远镜的巨大潜力,从而提供了确凿证据证明黑洞和其宿主星系以及周遭环境之间的相互关系。”
这一图像是在LOFAR设备测试拍摄阶段获取的,其目标选取了巨型椭圆星系M87,一个位于室女座核心位置的星系成员。M87的大小相当于银河系的2000倍,其核心拥有迄今人类已知质量最为巨大的黑洞,质量为太阳的60亿倍。每一分钟这个黑洞都会吞噬与一个地球相当的物质,将其中一部分转化为辐射,而大部分变为超高速粒子喷流,而正是这一喷流结构产生了天文学家们所观测到的射电辐射。荷兰内梅亨大学的海诺·法尔克(Heino Falcke)教授表示:“这是首次在如此低的频率上获得如此高质量的图像。”
他说:“这是一项充满挑战性的观测,我们并未期望可以那么快,在LOFAR的测试阶段便获得如此美妙的结果。”为了确定这一气泡结构的年龄,研究人员使用位于美国新墨西哥州的甚大天线阵(VLA)和位于德国波恩的100米射电望远镜在不同的频率上进行了观测。结果是科学家们发现这一气泡的年龄年轻地让人吃惊,其形成距今仅有大约4000万年。这一概念在宇宙尺度上几乎就是“刚才”。
在低频率波段进行的观测没有发现这一气泡结构层外侧存在遗迹辐射,这说明这一气泡并非仅仅是很久之前的一次事件中形成后留下的遗迹,而是仍在不断得到来自内部中央黑洞的粒子流补充。德国马克斯·普朗克地外物理研究所的安德烈·梅洛尼(Andrea Merloni)说:“最有意思的是,这一结果同样展示了发生于非常接近黑洞附近的剧烈的物质-能量转变过程。在这一案例中,这一黑洞在加速喷流方面非常高效,而在产生可见光辐射方面却效率低下。”(晨风)
[新浪网]
银河系中心黑洞爆发最明亮耀斑
中国科技网讯 据物理学家组织网近日报道,一个由美国麻省理工大学(MIT)、密歇根大学、荷兰阿姆斯特丹大学等单位科学家组成的国际天文小组,利用美国国家航空航天局(NASA)的钱德拉X射线太空望远镜探测到从位于银河系中心的人马座A*爆发出的迄今最明亮的X射线耀斑,光源距地球约26000光年,亮度是黑洞正常发光的150倍。据研究人员观察,耀斑爆发时间超过1小时,然后逐渐变暗。这次短暂的爆发也是研究类似的成熟黑洞的线索。研究结果发表在最近的《天体物理学杂志》上。
该天文小组报告说,在今年2月9日的一次观察中,他们探测到了最大的耀斑爆发,发出了“很少”的能量。“很少”只是相对于人马座A*自身约为太阳40亿倍的质量而言的。耀斑爆发原因目前尚不清楚。
当黑洞吞噬它附近的物质时,会以光的形式发出能量,通过探测这种光能探测到黑洞的存在。新生星系和类星体的中心通常极为明亮,正是其中心黑洞在吞噬周围物质,发出了大量能量。随着黑洞变老,吞噬速度会慢下来,“吃”得更少而变得更昏暗。“我们正在研究黑洞变老时会怎样。”MIT科维理天体物理与太空研究所博士后乔伊·尼尔森说,“黑洞虽不像年轻的类星体,但仍然活跃。”
“人们会把黑洞想象成一个真空吸尘器,绝对地吸收一切物质。”MIT科维理研究所弗莱德里克·巴格诺夫说,“但在生长速度极低的情况下,它们变成了很挑剔的食客,出于某种原因,它们还会‘吹走’大量能量。”
“不知道出于什么原因,人马座A*突然开始吃得更多。”MIT科维理研究所迈克尔·诺瓦克说,“对此的一个解释是,在偶然情况下,一个小行星接近了黑洞,黑洞把它拉过去撕成了碎片,吞掉这些物质并转化为辐射,如此就看到了这些明亮的大耀斑。”诺瓦克推测,尽管这种事件相对罕见,但耀斑爆发的频率可能比科学家预想的更高。
研究小组还将再花一个多月的时间通过钱德拉望远镜来观察人马座A*,希望能发现更多的耀斑,并寻找这些周期性爆发的特征以及导致爆发的可能原因。
加州大学洛杉矶分校天文学教授马克·莫里斯说,尽管黑洞每天都会爆发一些亮度较小的耀斑,但最近这次这么明亮的耀斑爆发极少探测到。“这些明亮耀斑为研究耀斑爆发过程提供了信息,比如耀斑期间的波动变化、光谱变化,以及增强减弱的速度等,这是从微弱耀斑无法获得的。明亮耀斑有助于科学家构建出强耀斑的统计学特征,最终通过这些特征找到耀斑爆发的原因。”
巴格诺夫更关心的是黑洞发出的能量为何这么少。2003年时,他用钱德拉望远镜进行了首次观测,根据当时计算的人马座A*周围的气体数量,它发出的光应该比现在观察到的更亮100万倍。这表明黑洞浪费了绝大部分物质,这部分物质很可能以其他方式被消耗掉了。但目前尚未找到合理解释。
“我们确实研究过这种差异,可能由于绝大部分气体逃逸了,但这不是我们所期望的。”巴格诺夫说,“我们正在拼凑发生在银河系中心的历史。”(常丽君)
[科技日报]
地球或因黑洞而存在:释放能量滋养生命(图)?
银河系中心的黑洞不仅会吞噬周围的物质,还会向外辐射出能量,黑洞的活动程度 与其所在的整个星系有莫大的关系,如果银河系中心没有黑洞,也许我们今天所在 的太阳系将不会存在。
黑洞吞食过程中所释放出的巨大能量会强烈抑制恒星的形成。如果没有外流物有规则的调控(左图),一个星系就会拥有过多的会爆发成超新星的年轻恒星。 相反,一个过度活跃的黑洞(右图)也会终止恒星形成,使宿主星系缺少可以构建行星的重元素(恒星聚变产生),例如铁、硅和氧。而银河系中央黑洞(中图) 的活动程度和位置正是恰到好处。
导语:可能正是银河系中央那只吞噬物质的怪兽,造就了地球和它的宜居性。
撰文 凯莱布•沙夫(Caleb Scharf)
翻译 谢懿
在浩瀚的宇宙中,我们的存在犹如白驹过隙。人类的需求完全被宇宙所忽视,大自然以难以琢磨的方式,在空间和时间的尺度上施展着自己强大的威力。也许我们唯一能聊以慰籍的就是,关于我们所在的地方,我们会提出无尽的问题并寻求它们的解答。问题之一便是,我们所处的这个特殊环境,与由恒星、星系以及黑洞所构成的宏伟宇宙画卷之间,到底有着怎样深刻的联系。
许多宇宙现象都能潜在地影响生命的存在,但有些影响会更明显一些,黑洞就是其中之一。宇宙中还没有其他天体可以如此高效地把物质转化成能量。也没有别的天体能像黑洞这样,可使物质以接近光速的速率运行数万光年。另外,黑洞还能诱捕附近的物质,任何东西都无法幸免。它们是宇宙中具有终极竞争力的食客,就像一个“吃货”,常常会狼吞虎咽地进食,而非细嚼慢咽。
落向黑洞的物质不会悄无声息地匿去。随着越来越接近视界(黑洞表面),物质会以极高的速度运动。如果黑洞本身也在自转,那么落入黑洞的物质还会以极高的速度做螺旋运动。这些物质与其他任何东西发生碰撞,它们所具有的巨大动能便会转化成原子和亚原子粒子的动能,释放出电磁辐射。在抵达视界前,这些数量巨大的粒子和光子可以逃离黑洞,向外汹涌而出。用一个粗略的比喻,便是浴缸排水带来的杂音。随着水流进入排水管,猛烈撞击空气中的分子,动能的一部分就会转化成声波。声波的运动速度比水快得多,可以从排水管中逃逸出来。对巨大的黑洞而言,在这样一个“消化”过程中所释放出的能量,足以对周围的星系产生广泛的影响。
物质被“喂”入超大质量黑洞的情形,就如同衣服在洗衣机中,会偶尔晃动并发出声响一样,该过程被称为“负载循环”。黑洞负载循环的大小代表了黑洞由吞食物质到恢复平静的转变速度。目前,位于银河系中央的超大质量黑洞正处于平静状态,但它也会随时间而转变。天文学家推测,银河系中心黑洞的负载循环与银河系的整体状态之间存在关联。同时,它也为解释太阳系如何滋养生命这一问题,提供了有趣的线索。
负载循环
根据天文观测的结果,我们惊奇地发现,黑洞负载循环与其宿主星系的恒星组成有关。这与把物质掷入黑洞,开启黑洞的负载循环有着相同的动力学过程。这个过程可能会影响星系中恒星的种类,在负载循环巅峰时爆发的黑洞,它所释放出的能量,可以改变星系中恒星的组成成分。这些成分对于了解星系系统的特性是至关重要的。星系中的恒星可以是红色、黄色或蓝色的,蓝色的恒星通常质量最大,但寿命也最短,只需几百万年,就会燃烧殆尽。这就表明,如果你在夜空中看到了蓝色的恒星,那你就目睹了年轻恒星系统的景象和它正在经历的生老病死。
天文学家发现,如果把来自一个星系的所有光线都加到一起,整体的颜色会倾向于红色或蓝色。红色的星系多是椭圆星系,而蓝色的则是旋涡星系。介于两者之间的则被认为是过渡型星系——在这种星系中,如果蓝色的年轻恒星死去,并得不到更替,那么星系也许会变得越来越红。根据颜色的混合逻辑,天文学家将这一中间地带称为“绿谷”(green valley)。
在过去的几十亿年里,正是最大的“绿谷”旋涡星系承载着最强的黑洞负载循环。在现代宇宙中,“绿谷”旋涡星系内的巨型黑洞极有规律地生长并爆发。这些星系中,恒星的总质量相当于1 000亿个太阳质量。比起其他旋涡星系,如果你有幸一瞥上述任何一个“绿谷”旋涡星系,你会有更大的几率看到黑洞进食的迹象。在这些星系中,大约有1/10拥有一个正在吞食物质的黑洞——用宇宙学的术语来讲,它们的吞食过程会不断的开启和停止。
人们还不清楚“绿谷”星系和中央黑洞之间的物理关联。“绿谷”星系是一个过渡区,绝大多数其他星系不是比它红,就是比它蓝。这类星系中的系统正处于转变过程中,它甚至可能会终止内部恒星的形成。我们知道,其他环境(例如星系团和年轻的大型星系)中的超大质量黑洞也可以产生这一效果。原因可能是,这些黑洞的行为正在使星系朝着“绿谷星系”转变;也可能是,使星系发生转变的环境,正在向黑洞“喂食”物质。
随着对我们周围其他旋涡星系的研究,我们发现了一些证据:那些释放能量最多的黑洞,可以在数千光年的尺度上影响它的宿主星系。在物质落入黑洞的过程中,会发出强烈的紫外线和X射线,驱使热气体向外运动,扫过星系中恒星的形成区域,就像热浪横扫一个国家一样。虽然人们还不清楚,这些热气体是如何影响恒星及其内部元素的形成,但它的确对此起了很大的作用。同样,如此强劲的能量,还会影响星系中更广泛的区域。例如,一个被大型星系俘获的矮星系,在它下落的过程中,会搅动起周围的物质,并把它们送入黑洞(成漏斗状),就像煽动火堆的余烬,使其复燃一样。矮星系所产生的引力和压强效应,会抑制或促使这个大型星系的其他地方形成恒星。这些现象或多或少能解释,为什么一个超大质量黑洞的活动会和周围恒星的年龄(亦即颜色)大致相关。
更引人注目的是,天文学家近来发现,银河系也是一个大型“绿谷”星系。那就是说,银河系中的超大质量黑洞应该正处于一个快速负载循环过程中,这着实让人吃惊,因为潜伏在银河系中心的这个黑洞看上去并不非常活跃——事实上,是因为它对银心(银河系核心)周围恒星的轨道所产生的潜在影响,才让人确信它的存在。通过测量,我们发现,它的质量只有太阳的400万倍,只能算是个相对较大的黑洞。然而,根据我们对宇宙的研究,它应该是非常活跃的。
套用上世纪美国最伟大的演员之一亨弗莱•鲍嘉( Humphrey Bogart)的一句话,宇宙有这么多星系,而我们偏偏生活在银河系。我们当然也质疑,为什么银河系就没有一个饥饿的超大质量黑洞?不过,这可能只是一个时间问题,因为和宇宙的寿命比起来,我们的存在时间毕竟太过短暂。
的确,就在不久前,事情看起来都可能大相径庭。我们观测到了距离银心300光年远的星际气体云所产生的X射线的“回声”。从我们的角度来看,当时,也就是300年前,银河系中心的一个强大天体,向外释放出了比今天强一百万倍的X射线。2010年,美国哈佛大学的一个小组公布了一项惊人的发现:通过一束来自银河系内部的伽马射线,他们发现了一个暗弱却极其庞大的结构。这个结构横贯天空,看上去就像一对气泡,每个气泡都横跨25 000光年的空间尺度。这些发出伽马射线的气泡扎根于银河系的核心,它们也许就是过去10万年间,银心的黑洞在生长和活动时留下的痕迹。
种种证据拼合起来,一幅描绘我们银河家园的迷人图景逐渐浮现。如果银河系与其他成千上万个星系遵循一样的规律,那么它必定含有一个很有“饮食规律”的黑洞。这个黑洞也许不是最大的,释放出的能量也不是最多的,但它就像银心处的一个不安分的大深渊。或许,人们已经预料到,这个引力发动机随时都会重新点燃。
不冷不热
众所周知,银河系及其中央的黑洞是一个特殊的天体系统。特殊性之一便是,它指明了宇宙环境和地球生命现象之间可能存在的关联。科学家和哲学家有时会关注“人择原理”。“人择”一词源于古希腊,意为某种东西从属于人类或者人类存在的时期。人择原理常常用来对付一些很尴尬的问题,比如,我们的宇宙是否恰好适合生命的出现。理由是,在宇宙中,哪怕只有几个基本物理定律或物理常数发生了微小的变化,这样的宇宙也无法孕育生命。目前我们仍不能很好的解释,为什么这些物理参数是这个样子。因此也许有人会问:今天的宇宙为什么就恰巧适宜生命的出现?此事件的概率不是极小吗?
和许多科学家一样,面对这些问题,我也会觉得很尴尬。因此,我们决心摒弃我们在任何方面都是“特殊的”这一偏见。正如哥白尼提出的:地球不是太阳系的中心,我们也不是宇宙的中心。其实,现代宇宙学所描述的宇宙并没有实际意义上的中心。关于一些人择原理的争论,人们也需要慎重回答。多重现实或多重宇宙也许能够解决“我们是特殊的”这一问题。假如我们所在的宇宙只是多维宇宙中的一个,那么我们的存在也就不足为奇:我们只是生活在一个恰好允许生命存在的宇宙中,并没有什么特殊性,就像是一个拥有适宜气候的岛屿。
这些信息确实让我们感觉好多了,但也促使我们进一步思考,一个宇宙需要满足哪些条件,才能出现生命。银河系,包括我们自己,恰好处于超大质量黑洞活动的最佳影响位置,这是非常让人吃惊的。这可能并不仅仅是巧合,而且我们首先想到的问题便是,太阳系是否受到了25 000光年之外的黑洞活动的直接物理影响。
那颗超大质量黑洞,对银河系“郊区”的那些孕育生命的行星的宜居性,又有怎样的影响?在黑洞开启、进食并释放能量的过程中,我们并没有看到它变得多么明亮。不过,从银盘延伸出的巨大而炽热的伽马射线泡来看,的确表明黑洞释放出了巨大能量,但并不朝向我们。即使曾经有过更剧烈的天体活动,那必定也是很遥远的事情,甚至早于太阳系的形成(45亿年前)。从那以后,银心的中央黑洞对银河系“郊区”(比如太阳系)的物理影响变得适中(才有了生命的出现)。
对生命来说,这也许是件好事。如果行星(类似地球)暴露在大幅增加的星际辐射(高能光子和高速运动的粒子)之下,生物体内的分子会受到辐射的损害,甚至影响大气和海洋的结构以及化学成份。我们可能相对较好地被保护了起来,没受到来自银心(距离我们25 000光年)的辐射侵袭。但如果我们更靠近银心的话,结果就会截然不同。看来,我们没有居住在一颗更加靠近银心的行星上并非偶然。所以,我们不必在此时——而非数十亿年前的过去或者将来——发现自己的存在而感到惊讶。
和其他许多星系一样,银河系也会与中央的超大质量黑洞共同演化。确实,根据目前的线索,我们也许可以同时回答两个问题:银河系中央的黑洞如何直接影响地球上的生命,以及它作为银河系状态的指示器,起到了什么样的作用。超大质量黑洞和宿主星系之间的联系,为我们提供了一个测量星系演化的实在工具。在年轻宇宙中,受到黑洞强烈影响的类星体,一般都出现在最大的椭圆星系中,它们绝大部分位于星系团的核心。这些星系迅猛形成于宇宙早期,目前,它们当中的恒星几乎都已衰老,星系中的绝大部分原始气体,也因温度过高而无法形成新的恒星或行星。
至于其他椭圆星系,其巨大的、类似蒲公英头部的部分(由恒星组成),似乎形成于星系并合的后期。在星系形成过程中,某些未知的东西会“终止”恒星的形成,我们目前认为,超大质量黑洞所输出的能量(虽不剧烈,但能量惊人)是解释这一现象的绝佳候选者。另外,旋涡星系盘中央的恒星核球(星系盘中央上下凸起部分,由大量恒星组成,包裹着中央黑洞))也暗示了中央黑洞的存在。它们的一些模式和椭圆星系相同。在两种星系中,中央黑洞的质量都是周围恒星总质量的1/1 000。与我们相邻的仙女星系就是一个例子,其恒星核球比银河系的大20倍。
位于仙女星系(等级)之下的星系,属于无核球星系,包括许多旋涡星系。虽然银河系是一个巨大的星系(位列宇宙中已知的最大星系之一),但中央黑洞是相对较小的。在这些星系中,恒星核球的缺失一直是个谜:原因可能是,星系的原始物质最初很少,无法形成核球,或者说,其中央黑洞从来就没有真正起作用,又或者是,体积较小的星系或物质团块掉进过这些星系,在黑洞里,这些大量的矮星系对此也无计可施。在银河系中,那些名副其实的小不点(矮星系)十分可怜,它们往往只含有几千万颗左右的恒星,这也表明了,气体和尘埃没有再形成新的恒星。所以,这些矮星系(富含原始星际物质)常常十分暗弱,恒星几乎全无,就好像有人忘记点亮灯芯一样。
银河系目前依然在不断形成新的恒星,速率接近每年3个太阳质量。站在人的角度来看,这个数字并不大,但这也表明了,人类祖先从坦桑尼亚奥杜瓦伊峡谷中的某个地方直立走出来到现在,银河系已经诞生了至少1 000万颗恒星。这在140亿岁高龄的宇宙中,并不是一件坏事。年轻宇宙中的巨型星系,即那些从核心发出耀眼光芒的类星体,在某种程度上,已燃烧殆尽。这些星系中央的黑洞剧烈喷出的物质扼杀了任何新恒星的诞生:接近光速运动的空泡发出的压力波,会阻挠物质冷却下来形成恒星。而此时,银河系还在不断形成新的恒星。
完美宜居
银河系内几乎没有中央恒星核球,其中央黑洞的活动程度也不剧烈。这似乎可以帮助我们寻找适宜生命存在的外星系。这些外星系早期没有形成巨大的黑洞,所以也不会释放出巨大的能量。就像银河系,新的恒星就会连续形成,但不同的恒星系统具有不同的活力。由于巨大的循环压力波(circulating pressure waves)会扰动由气体和尘埃组成的恒星星系盘,所以新恒星往往形成于旋臂(旋涡星系中的螺线形带状结构)的边缘。这些恒星会更加远离银心。天文学家认为,太阳系正处在一个适当的区域。剧烈的恒星形成过程会留下一个极为凌乱的环境:大质量的恒星会以最快的速度燃烧掉内部的核燃料,然后发生剧烈的超新星爆炸。由此释放出的辐射会吹散行星的大气层或者改变大气层的化学成分;飞驰的高能粒子和伽马射线会轰击行星的表面;幽灵般的中微子流也会强到对娇嫩的生物体造成伤害。这些还不算什么,如果距离超新星很近的话,整个系统都可能会被蒸发掉。
在此过程,恒星内部丰富的元素也会播撒到宇宙中去。这些刚出炉的物质会形成恒星和行星。重元素的放射性同位素产生的热量,经过数十亿年的时间,在这些行星上形成了由碳氢化合物和水构成的复杂混合物,也促使行星形成了多层次的地质结构,并且富有活力。因此,在年轻恒星形成、爆发区域和年老恒星衰落、死亡区域之间存在一个“恰到好处”的地方,太阳系就位于这样一个环境当中。它既距离银河系中心足够远,又和目前正在发生恒星爆炸的区域保持着距离。
生命现象和超大质量黑洞的大小及其活动之间的联系,其实相当简单。比起那些贪吃却早已衰竭的黑洞,拥有一个大小适中、定期少量摄食的黑洞的银河系,会更容易出现一个富饶且温和的区域。事实上,在这一时间点,宇宙中任何和银河系相似的星系,都会和两个相反的过程——物质在引力下聚集以及黑洞吞食物质并释放出破坏性能量——紧密相连。黑洞活动越剧烈,新的恒星就越难以形成,重元素的产生也会停止。反之,黑洞如果很平静,星系中会充满过多的年轻恒星和爆发星(超新星、新星、耀星),或者太少的波动以致无法形成任何新东西。确实,一旦平衡发生根本变化,将会改变恒星和星系的整个形成过程。
如果没有星系和超大质量黑洞之间的共同演化,以及它们自身的特殊性,导致人类出现的整个事件链就会有所不同,甚至不复存在。宇宙中恒星的总数将会变化,小质量和大质量恒星的数目也会不同。星系的形成过程很可能将会改变,气体、尘埃以及元素几乎也会截然不同。有些地方将再也不会受到超大质量黑洞产生的强烈同步辐射的炙烤,还有些地方,能促使行星和恒星形成和演化所需的波动再也到不了那里。
宇宙中我们这个富饶的角落被它周围的一切所支配(包括银河系中心的黑洞)。这些特殊的,远离宇宙其他部分的地方,在塑造我们的过程中,扮演了最具影响力的因素之一。我们着实欠它们很多。
[新浪网-环球科学杂志]
相关报道
十大鲜为人知的恒星真相:黑洞不会吸入物质
仙女座大星系,在秋天的夜晚,当天气非常晴好时你可以用肉眼看到它。这个星系位于250万光年之外,几乎和我们的银河系一样大
新浪科技讯 北京时间11月1日消息,据国外媒体报道,你晚上还会抬头看看夜空吗?随着城市化的飞速发展,人们正在越来越远离璀璨的星空。而关于星星,你或许有一些了解,但是以下这个列表中所罗列的这些事实,你了解吗?
1.黑洞不会“吸入”物质
很多影视或文字作品中常常有这样的描写:“黑洞将一切周遭的物质吸入其中…”。事实上前一段时间,当欧洲核子中心运行其大型强子对撞机时,就有很多人担心它会制造出微型黑洞“瞬间吞噬”掉整个地球!但事实上,黑洞真的不会“吸入”物质。
如果从严格的语义学角度考察,“吸”这个动作就有点像是真空吸尘器工作的原理。但是黑洞吞噬物质时并不是这样进行的。当真空吸尘器工作时,一个风扇会在吸尘器后部制造出局部的真空环境(事实上只是一个局部的低压区),当大量外部空气由于气压差而被吸入时,垃圾也便随之被吸入其内部。
而对于黑洞而言,并没有涉及到“吸”这个动作。事实上,黑洞周遭物质是在一股强大引力的作用下被吸引过去的。因此形象的说更像是这些物质“落入”黑洞之中,而不是被吸尘器那样吸进去。万有引力是自然界的基本作用力之一,所有的物质都具有引力特性。这种区别看上去可能非常细微,但是从物理学的角度来说,两者是存在着本质上的区别的。
2.你至少可以看到30,000,000,000,000,000公里之外的物体
在一个晴朗的夜晚,你的目光所及轻易就可以超过19,000,000,000,000,000英里(约合30,600,000,000,000,000公里)。这大约是到天鹅座α(天津四)的距离。这是夏季大三角中和牛郎织女一起构成夏季大三角的明亮恒星。天津四太亮了,整个北半球基本都可以看到,事实上几乎是全世界有人居住的地方都可以看到它。还有一颗恒星,那就是海山二(船底座η)。它的距离比天津四还要远上两倍以上。但是这颗恒星非常暗淡,因此不太受到人们的关注。事实上,还有一些星系你可以直接用肉眼看到,比如仙女座大星系和三角座大星系,它们的距离就相当惊人了,仙女座大星系距离地球大约250万光年,三角座大星系的距离则超过300万光年(1光年约合9.46万亿公里)。
3.星星不会眨眼睛
“一闪一闪亮晶晶,满天都是小星星”。这首歌是不是耳熟能详?确实,恒星看上去似乎会闪烁,尤其是在它们接近地平线的时候。比如有一颗最著名的恒星——天狼星,它的闪烁效应太明显了,以至于不断有人看到天狼星后报告他们看到了UFO。但事实上,恒星的这种闪烁是大气效应导致的,并非恒星本身的属性。当恒星发出的光通过地球大气层时,尤其是当恒星接近地平线附近时,恒星发出的光就需要穿过更厚的大气层,而大气层不同位置的气团密度是存在差异的。这将导致星光的轻微折射效应。星光最终抵达你的眼睛,但是星光的颜色和强度都发生了轻微的变化。这样的结果便是“闪烁”的感觉。而当宇航员离开地球大气层进入空间之后,他们看到的恒星便不再闪烁了。
4.太阳是一颗矮星!
我们早已习惯于认为太阳是一颗“正常”的恒星,当然在很多方面事实也的确如此。但是你知道吗?太阳其实是一颗矮星。或许你之前有听说过白矮星的说法,但是事实上白矮星根本不是什么活着的恒星,那是一颗死去恒星的“尸体”。严格意义上来说,在天文学上要想被归入“正常”恒星的只有三大类,那就是“矮星”,“巨星”和“超巨星”。这些恒星之所以可以被视作“正常”或者“活着”,是因为它们可以通过稳定的聚变反应产生能量。其中巨星和超巨星代表的是恒星的老年时期,但是绝大部分恒星正处于其演化的中期,也即是正值壮年,这就是所谓的主序星。这些恒星都被称作“矮星”。尽管矮星内部还有很多细分类别,但是有一点,它们的大小都远小于巨星和超巨星。因此从这一严格定义上来说,太阳是一颗矮星,很多时候人们将其称作“黄矮星”。
5.太阳是一颗绿色的恒星
太阳是一颗绿色的星星!或者更加准确的说是一颗蓝绿色的星星——它的辐射峰值恰好位于光谱中蓝色和绿色的交界处。这一点并非无关紧要,因为一颗恒星的温度就直接反映在它所显示出来的颜色上。对于太阳来说,其表面温度约为5800K左右。然而正如之前谈到的,由于人类肉眼对颜色分辨上的误差,我们总是觉得太阳其实是黄白色的。
6.你看不到绿色的星星
尽管有些人声称自己看到了绿色的恒星,比如氐宿四(天枰座β),但事实上绝大部分观测者并没有看到真正绿色的恒星,而只是他们所使用的望远镜的光学误差,或者是人偶然间出现的视觉误差。恒星会发出各种颜色的光,形成光谱,其中也包括绿色,然而人类眼睛-大脑之间的联系方式让人类难以从这样的光谱中真正识别出绿色。对于某颗特定的恒星来说,某一种颜色可以主导其辐射,绿色很容易和其它颜色混杂在一起,恒星整体上就显出一种白色调。对于一般的恒星来说,常见的颜色按照温度从低到高依次包括红色,橘色,黄色,白色,以及蓝色。因此光从人类肉眼的角度来说,你是看不到绿色的星星的。
7.恒星是黑体
在物理学中,黑体的定义是这样一个物体,它可以吸收所有照射到其身上的所有电磁波,包括可见光和无线电波等等。一个很好的例子是一座砖窑:内壁全是黑色的,外面只有一个很小的开口。在这种情况下,所有从外界透过小窗户照射进入砖窑内部的光线都会被其黑色的内壁吸收,没有任何一丝光线能够逃离,也就是说,这是一个完美的吸收体。你可能不知道的一点是,恒星便是这样一个完美的吸收体!
当然,在黑体的定义中必须明确的一点是,它只是限定了必须吸收所有的入射电磁波,但是没有排除黑体自身可以向外进行能量辐射。在恒星的案例中,恒星吸收所有照射到其身上的辐射,但同时将它们全部辐射回太空之中,并且这种辐射的量还要远远大于它的吸收量。因此可以这样说:恒星是一个闪着耀眼光芒的黑体!当然,最最理想的黑体是黑洞,这是因为它是真正的吸收所有光线,并且不对外发光。
8.红色代表高温,蓝色代表寒冷?错误!
在生活中我们已经对这种情况习以为常,那就是红色会让你想到火热,高温;而相比之下,蓝色则会让你想到冷静,寒冷。这样的感受是符合心理学的,因为红色是火炉的颜色,而南极的大块寒冰在阳光下透出一股冰冷的蓝色。然而我们之所以会将红色与高温,蓝色与低温联系在一起,完全是因为我们的日常生活经验束缚了我们。事实上,随着温度的变化,高温物体会不断改变颜色。其中红色所表示的是最低的温度,随着温度上升,物体的颜色会逐渐变白,最后变成蓝色。因此下次仰望夜空的时候,注意那些闪着红色光芒的恒星,它们是温度最低的恒星,而那些闪耀着蓝白色光芒的恒星才是真正“火热”的!
9.天气再好,你也看不到“无数”颗星星
尽管在一些电视,尤其是爱情片,或者一些充满诗意的描述中常常会听到“天上无数的星星”这样的说法,但是这并不是事实。当然宇宙中的恒星数量甚至银河系中的恒星数量就可以轻易达到上千亿颗,然而绝大部分的恒星都不够亮,不够近。而如果有一天天气状况特别理想,也没有月光干扰,更没有任何人为的光污染。那么,此时一个视力极好的人抬头可以看到的恒星数量大约是2000~2500颗。但即便听上去这个数字并不大,但已经非常壮观了,数起来已经非常费力。因此,下次再听到类似“百万颗星星”,“漫天繁星无数”之类的描述,仅仅将其视为一种艺术修辞,因为那不科学。
10.你在夜空中所看到的每一颗恒星基本上都比太阳大
在晴朗的夜空中,你大约可以看到5000颗恒星,它们的视星等高于6。在所有这些恒星中,只有很小的一部分最暗弱的恒星的大小和亮度与太阳接近,而其它所有恒星都比太阳更大也更亮。而在所有这些恒星中,大约有500颗的视星等高于4,这大约就是你在城市地区用肉眼所能看到的所有恒星。这些恒星的全部都比太阳更大而且也更亮。而肉眼看到的最明亮的50颗恒星中最暗弱的一颗是半人马座α,但其亮度仍然相当于太阳的1.5倍。不过这颗恒星从北半球看来地平高度比较低,因此难以见到。(晨风)
[新浪网]